Average resume stats for your industry
Words
220
Pages length
1.3 p
Job titles per resume
Bullet points per job title
4.4
Experience
3.4 years
Top Skills for Data Scientist resume
HARD SKILLS
  1. Data Science
  2. SPSS
  3. SAS/WPS
  4. R
  5. C#
SOFT SKILLS
  1. Communication
  2. Curiosity
  3. Business mindset
  4. Adaptability
  5. Critical and analysitcal thinking
Resume Background

Data science is all the rage.

It’s hot. It’s trendy.

And it also pays well.

According to Glassdoor, “Data Scientist” tops the list of the best jobs in 2020, with a median base salary of $110,000.

It’s not just that they pay well, data scientist positions are in high demand too - 6.5 times as many data scientist positions were posted on LinkedIn in 2018 than in 2012.

Talk about rapid growth!

Of course, when there’s a great offer, there are also a lot of takers - specifically, good professionals with strong qualifications and rich experience.

Even to get to an interview, you’ll need a great resume - and we’re here to show you the best data scientist resume examples.

I was ready to answer questions about real life work, how to deal with complicated situations, how to deal with new data, how to do a data science workflow, how to explain hard concepts to managers and more.

This guide will teach you:

  • How to create a data science resume that attracts recruiters’ attention.
  • What data scientist skills are most sought out.
  • How an entry level data scientist resume can present you in a favorable light.
  • What clues to look for in the data scientist job description.

Looking for related resumes?

To start things off, here are 3 data scientist resume samples built with our platform - you’ll soon understand what makes them effective.

Senior Data Scientist resume

Things that we like about this resume include a link to the applicant's Kaggle profile straight off the bat. This helps the recruiter see the applicant's activitiy in one of the biggest data science forums on the planet - we assume it's regular and impactful, having in mind they featured in on their resume.

As a Senior Data Science applicant, having a summary outlining your most important skills and achievements hooks the recruiter and creates a nice reading flow, too.

What we also like is that the candidate grouped their hard skills by type - the recruiter or the CTO of a company can quickly find out exactly what they need.

data scientist senior data scientist.jpg


Entry-level Data Scientist resume

Being entry-level, this candidate has put a greater emphasis on their hard skills, featuring them close to the top of their resume. What's more, featuring both SAS and Python makes this candidate a good pick for a wide array of niches, including medical, banking and tech companies.

data scientist entry level data scientist.jpg


Python Data Scientist resume

The key to framing a resume around a specific technology is one word: keywords. This candidate has made a clever use of each resume section and targeted their resume towards Python data science. Judging by the whole structure and content of their resume, they should also be an excellent communicator, which is an essential skill in this field.

data scientist python data scientist.jpg


Feeling inspired? Great! Let's go on to making the resume that will get you your dream job.

Create a great Data Scientist resume outline to set yourself up for success

It’s easier to start a journey when you have a map. A data scientist resume outline serves the same purpose. Here are the sections we recommend including on every data scientist resume:

  • Resume Summary or Objective;
  • Experience;
  • Education;
  • Certifications;
  • Skills;
  • Projects;
  • Publications.

These sections will help you showcase your background, as well as the knowledge you have in relevant fields.

Including both an Experience and Projects section will give the recruiter information he’s used to seeing in a reverse-chronological order - your experience - but it also allows you to highlight specific things you’re really proud of working on.

In similar fashion, having a formal Education section and a Certifications section provides you with additional opportunity to showcase knowledge gained. And this is especially helpful in the data science field where people can come from a variety of technical or economic fields and then get niche specialization in data science.

Finally, adding a Publications section can help you showcase articles you’ve written - and we don’t mean only publications in scientific journals. Since data scientists need to interact with a variety of audiences, it’s good to show you can explain ideas in a clear and efficient manner - and there’s no better proof of that than written pieces.

Still, you should use this as a general suggestion, not a rule set in stone. Both the sections, as well as the order in which these sections show up in your resume, is up to you.

How to choose an effective Data Scientist resume template?

There are a lot of options out there in the world of resume templates. A modern one will “jump” off the pile of applications and make sure yours actually gets read. A neat one will naturally guide the recruiter’s eye through the content and help them understand what you’re all about.

You’ve also got three main resume formats:

Whichever you choose depends on your years of experience, as well as whether you’re coming from the same or adjacent industry.

  • Reverse chronological resumes are best for experienced individuals who stuck in their niche for a while.
  • Functional resumes are used by less experienced job seekers or career changers. Note that it’s not a format that recruiters prefer, as most are used to the classic chronological alignment.
  • Hybrid resumes are great for both experienced and entry-level candidates, as well as people coming from adjacent industries. They combine the best of both worlds.

While we can’t tell you which resume template will work for sure, we can give you the key rules of thumb you should consider:

  • Choose a template that complements your content - look for something that works well with the amount of content you’ll put on the resume. Some templates look empty if you don’t have lots of experiences. Others will make lots of text look too crowded.
  • Everything over 2 pages won’t get read - try to fit your resume on one page, two at most. Don’t be scared to cut out experience that’s not that relevant to the position you’re applying for.
  • Avoid long text - no bullet point should be longer than 2 rows. Your resume is not the place for prose, save that for the cover letter. Use 10’’ resume margins - that’s default for a great resume design;
  • Choose fonts that look professional - we don’t feel like this needs to get said, but the examples we see online beg to differ. A resume is no place for playful fonts. Stick to something clean and professional, and avoid Comic Sans and Papyrus like the plague that they are.
  • Add some color, but don’t overdo it - adding an accent color will make your resume look less like… well, a boring data scientist resume. The key is balance - adding a nice color combination will make you stand out, but adding anything more will make it the resume of a madman.

For more information on the best resume formats, read our guide: The Best Resume Formats You Need to Consider (5+ Examples Included).

What makes a great Data Scientist resume header?

The first rule of a data scientist resume header is “first do no harm.” In other words, no unprofessional email or photo when it’s not allowed. But beyond that, a resume header can actually add a lot. By quickly telling a recruiter who you are and giving them access to useful info about you on a personal site, you can make a strong first impression.

A data scientist resume header should have:

  • Specific information about who you are (not just that you’re a data scientist but that you’re more junior, senior, a recent graduate, etc.);
  • Contact information that makes you easy to get in touch with via phone or email;
  • No information that violates company or state laws (more about that below);
  • A link to a personal Github or other page to show off data science work you’ve done.
LATISHA HAMILTON
Data Scientist
1-555-555-555
help@enhancv.com
Lexington, KY
WRONG
LATISHA HAMILTON
Entry-level data scientist
1-555-555-555
help@enhancv.com
Github.com/latishahamiltondatascientist
Lexington, KY
RIGHT

The second example provides more relevant details like that Latisha is entry level and links to her GitHub account, a nice touch which shows that she’s proud to show off her work.

If you want more ideas for stand-out resume headers, read through our guide Perfecting Your Resume Header so You Get Noticed.

pro tip icon
Pro tip

Some companies, states, and countries have non-discrimination policies about what kind of information can be included on your resume. This might include a photo (which is often included in a resume header and might be on personal web pages you link to). You can always email the company’s HR department to ask about their policies before you apply.

Why you need a Data Scientist resume summary and what to put as resume objective

One of the inevitable questions most people ask when writing a resume is what to include, a summary or an objective. Or maybe both? Resume summaries are a great way to share a condensed version of your professional (and personal) story.

A resume objective is great for an entry-level data scientist who wants to show their passion for the subject and to prove their motivation.

A summary is also great when you’ve transitioned into data science from another field. And the best resume summaries are catchy. A favorite summary we’ve seen started with “I am an architect that got into studying data science as kind of weird mid-life crisis.” The recruiter will surely want to learn more!

The one mistake we see most often in resumes reads something like this:

Summary
An entry-level data scientist who wants to expand into the big data field and build deeper engineering capabilities.
WRONG

If we can paraphrase President Kennedy, say not what the employer can do for you, but what you can do for the employer.

A clear objective clearly states what value you’ll provide the business with:

Summary
An entry-level data scientist who takes pride in building models that translate data points into business insights. Used my skills to win the Student City Datathon challenge, now eager to apply the same knowledge to real-world business problems..
RIGHT

See the difference? This second applicant clearly states what they have to offer.

A data scientist resume objective or summary should:

  • Show your motivation, why do you want to be a data scientist? Your passion can be just as important as your experience.
  • Demonstrate your skills (at least in some basic ways, you’ll have more details in the rest of your resume).
  • It should tell a story and capture the recruiter’s attention, including information about your long-term career goals if relevant.

Check out our detailed summary guide with 30+ professional summary examples to learn more! If you’re looking to craft a compelling resume objective instead, read our writing tips at 10 Resume Objective Examples You Need to Steal (How-to-Guide).

How to create an impactful Data Scientist experience resume section?

The experience section is the meat of your resume. It’s where all your hard work gets to shine. To make it most impactful, you should follow a couple of key rules:

  • Include only major and relevant positions - the 2-month stint as a salesman at your grandfather’s banana stand interests no one. But that job as a data engineer working on sales data for a national fruit reseller - that’s something the recruiter needs to see!
  • Make it reverse-chronological - it’s the resume standard and it saves mental energy for the recruiter. So add your most recent positions first.
  • Focus on impact rather than responsibilities - data mining, statistical analysis, and data visualization will be on pretty much any data scientists’ resume. The question is what was the impact of your work on the business. So explain that rather than just listing responsibilities.

The third point is so important that we want to illustrate this. Consider the following experience section.

Experience
Senior Data Scientist
DNB Bank
Date period
Lexington, KY
Company Description
Designed and implemented models for loan success factors, achieving a 20% improvement of approval decision time.
Spearheaded complete database restructuring of the Financial Aid Database used across 16 different countries.
Coordinated a team of 20 data scientists working on 6 different projects for insurance, finance, marketing, and security departments.
RIGHT

This sure packs a punch! The person who held this position will know what they are talking about when it comes to data science. Now consider if they had only the responsibilities listed there:

Experience
Data Scientist
DNB Bank
Date period
Lexington, KY
Company Description
Created and presented models for loan success factors.
Did database manipulation of the Financial Aid Database.
Coordinated a team of data scientists.
WRONG

It’s underwhelming and bland - and it’s the same person! So take a point to explain what were the results of your work. You sure have a lot to be proud of - show it. For more ideas on how to create an actionable resume experience section, check out our guide How to Describe Your Resume Work Experience.

Writing an Entry Level Data Science resume

Every graduate looking for their first job in data science will read this section and start thinking “well, I’m done, I don’t have any experience yet!” Not so fast! If you think you don’t have any experience, then you are mistaken. Think about adding:

  • Course projects that involved data science work - if you’ve gone through the effort of learning data science, you sure have practiced your skills on quite a few practical exercises. List them here. Just make sure you first include the new and exciting projects - no one wants to see the same tired Titanic Survivor project, so try to mix things up.
  • Internships - no matter if it’s your uncle’s company or a university help gig, you probably learned lots, including keeping up with deadlines, working well with others and communicating data results to different audiences. Practical skills matter, even if they are soft skills.
  • Volunteer work or side projects - if you don’t have practical experience, create some. There are tons of local SaaS startups that would benefit from logistic regression analysis to uncover their user activation points - help them out and use that as a practical example in your resume.

As you can see, there’s lots going on beyond traditional 9-to-5 steady job experience. And all of these will work well on your data scientist resume. Looking to build your own entry-level job resume? Follow the steps in our guide How To Write Your First Job Resume.

Creating a Data Scientist education section that shines on your resume

You’ve come a long way to become a data scientist. You’ve put in tons of hours reading O’Reilly textbooks, debugging Python scripts, and creating visualizations in Tableau. So make all this hard work show on your resume. For a stellar education section add information about:

Entry level data scientists should be especially diligent when presenting their education, while senior specialists can add a shorter format. Still, consider these two examples - one has everything a recruiter would be looking for, the other has a lot left out.

Education
BS, Data Science
UC Berkeley
GPA
4.0
/
4.0
Data Science Major
Data Science Major Foundational courses in Mathematics and Computing
WRONG
Education
BS, Data Science
UC Berkeley
GPA
4.0
/
4.0
Took additional courses in Big Data Ecosystems and Data Visualisation 201
Won 3rd place in the Student City Datathon with a project on parking data modelling
President of the STEM Diversity Society for 2 consecutive semesters
RIGHT

Don’t be afraid to expand your education section - done right, it can be the best asset of your data scientist resume. Browse more essential tips on how to feature education on your resume, in our guide Perfecting the Education Section on Your Resume.

What skills do Data Scientists need to have?

A data scientist position requires a unique set of skills that lets you ingest, transform, visualize and model datasets. They also need to communicate constantly with diverse stakeholder groups. So you’ll need to show a combination of hard skills and soft skills in order to make an impression.

First and foremost, you’ll need the skills to get the job done. In “Top 10 Big Data Skills to Get Big Data Jobs” Amit Verma presents a comprehensive list of languages and systems data scientists should be able to work with, including:

top sections icon

Top Data Scientist technical skills:

  • Programming languages including Python, Java, C, and Scala;
  • Quantitative and statistical analysis tools like SAS, SPSS, and R;
  • Apache Hadoop and its components like Hive, Pig, HDFS, HBase, and MapReduce;
  • NoSQL databases including Couchbase and MongoDB;
  • Data visualization tools like QlikView and Tableau;
  • Data mining tools like Rapid Miner, Apache Mahout, and KNIME.

Make sure you include only things that you know well enough to start working with tomorrow. There’s no point in inflating expectations and then missing the mark.

What about soft skills?

Knowing the technical stuff often doesn’t cut it. As a data scientist’s role in the company is key, you will need to show you can handle the responsibility and deliver quality work.KDnuggets lists a few important soft skills, and we’ve added a couple more:

top sections icon

Data Scientist soft skill examples:

The world of data is complex and you should demonstrate you can navigate through it, but also help others orient themselves in it. Make sure you cover this, especially for more senior positions where presenting to managers is everyday work.

How to add skills from the data scientist job description?

Knowing what you’re good at is only part of the equation. The other part is making sure you can provide what the employer is looking for. So don’t fill your skills resume section in a vacuum - make sure you compare it with the data scientist job description.

Here’s a simple step-by-step process to do that:

  • List your skills, both hard and soft.
  • Check out the job offer and highlight all skills mentioned there.
  • Compare the two lists and add all the skills you have and were mentioned by the job description.
  • Add a couple more - the ones you think are your differentiating strengths.

Now let’s try applying those steps to a section taken from a real posting for a data scientist job:

“At Lockheed Martin Rotary and Mission Systems, Cyber Solutions, we are driven by innovation and integrity. We believe that by applying the highest standards of business ethics and visionary thinking, everything is within our reach – and yours as a Lockheed Martin employee. Lockheed Martin values your skills, training and education. Come and experience your future!”

The rest of the job description is fairly clear when it comes to listing the precise skills required, but from this introduction you can pick up some other key elements to emphasize in your data scientist resume. Let’s break down what these mean: Innovation: The company sees this as a core value, try and emphasize any times you applied your data science skills in unique ways to solve new problems.

  • Integrity: Ask yourself how you can show you have integrity. This could be emphasizing being a Boy Scout (cliche, but it works), that you volunteer, or something else.
  • Business ethics: Maybe you randomly took a business ethics course in university? If you spot this, it might be worth mentioning in your education section.
  • Visionary thinking: Even if you’ve never done anything visionary, you can emphasize looking towards the future of AI and data science in areas like your resume summary or objective.

Adding resume elements that emphasize what’s mentioned in the job description is a subtle but powerful way to make your resume stand out. Are you still not sure what skills will win recruiters over? Check out our guide on How to Create A Resume Skills Section To Impress Recruiters (+10 Examples You Need to See).

Listing Data Science projects on your resume

The more relevant information you can include on your resume, the better. So adding a section that highlights data science projects you’ve worked on will help recruiters get additional experience data points about you.

So if you have worked on specific projects, be it during your education or as side projects, list them in a dedicated Projects section. You could also add here key projects you’ve worked on in your past work positions. Whatever you do, make sure to not only explain what the project was about, but also show what the impact of your work has been.

Adding publications on your resume

Looking at other potential sections you can include in your resume, a Publications section might be an interesting addition.

The reason is simple - a good data scientist is not just a numbers person. They need to be a clear communicator, too.

And a Publications section will highlight just that - your ability to clearly communicate complex ideas.

When a person of science thinks about publications, they immediately default to research papers published in reputed peer-reviewed journals.

Don’t do that.

A Publications section can include links to your own blog or some guest posts you’ve written online - for example, articles explaining a specific function on your university’s website or a case study for your company’s website.

Add data science certifications on your resume

Since data science is a relatively new field, it’s common for professionals to come into data science from different fields. In this case you can shorten your education section and expand on additional courses you took - that’s where the certification section comes in.

Make sure you follow a few rules when presenting certifications on your resume:

  • Make them stand out - don’t bury your certifications in another resume section, give them their own.
  • Add any capstone projects you worked on - certifications usually make you show what you learned in practice. Mention your capstone and other projects you’ve worked on.
  • Show how fast you made it - if you completed the certification course quickly, you can mention it on your resume. It shows dedication and motivation to learn.

For more information on how to properly list resume certifications, we recommend reading our guide How To List Certifications On A Resume (Examples Included).

Should you add more personality to your resume?

You’re a serious person, you’re applying for a position of great responsibility. We get it. But after all, people work with people. So showing what lies beyond your skills, knowledge, and experience matters. So it’s more than logical to include elements that demonstrate your personality in your resume. Think of:

  • Your passions and interests outside of work;
  • Your favorite books;
  • What your typical day looks like.

These are powerful differentiators that will make your resume more than a data scientist profile. It will help recruiters determine you’re a good culture fit for the company and it will make hiring managers excited to meet you. Such elements also provide great discussion points during an interview - they will help recruiters know how to approach you and make the conversation easier. It’s also something that will make the interview process more natural and put you at ease.

Other sections to include on your resume

Depending on the company, job seniority level and your location, you may want to include more sections to your Data Science resume:

Cover Letter for a Data Scientist

In case the job description says you need to provide a cover letter, do include yours. Otherwise, you can always leave it out.

Nowadays, job application forms include questions like “why do you want to work here”, or “explain why you’re the best fit for us”, which makes you wonder are cover letters really necessary?

Still, they help you tell your story in a way that, if written right, it’s captivating and engaging.

In any case, you should pay close attention to the following tips when a cover letter is a must:

If you need more inspiration for a data science cover letter, check out this Data Scientist Cover Letter Example.

Key takeaways

To sum it all up, a great data scientist resume needs to tick a few different boxes:

  • Showing you know your stuff by presenting relevant education and certificates;
  • Demonstrating practical knowledge with experience and projects you’ve worked on;
  • Showing how your skills align with the requirements in the job description;
  • Adding a pinch of personality with additional sections.

If you manage to do all that and still keep your resume to two pages max, then congratulations - you’ve got a solid foundation for earning your next dream job as a data scientist!

Looking to build your own Data Scientist resume?

Enhancv resume builder will help you create a modern, stand-out resume that gets results
Variety of custom sections
Hassle-free templates
Easy edits
Memorable design
Content suggestions
TRY FREE FOR 7 DAYS
Author image
Volen Vulkov
Volen Vulkov is a resume expert and the co-founder of Enhancv. He applies his deep knowledge and experience to write about career change, development, and how to stand out in the job application process.